Braided vector fields on a quantum hyperboloid via the quantum group $U_{q}(s /(2))$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42445203
(http://iopscience.iop.org/1751-8121/42/44/445203)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.156
The article was downloaded on 03/06/2010 at 08:19

Please note that terms and conditions apply.

Braided vector fields on a quantum hyperboloid via the quantum group $U_{q}(s l(2))$

Antoine Dutriaux
ISTV, Université de Valenciennes, 59313 Valenciennes, France
E-mail: a.dutriaux @orange.fr

Received 7 June 2009, in final form 6 September 2009
Published 8 October 2009
Online at stacks.iop.org/JPhysA/42/445203

Abstract

We introduce a new method of defining a space of 'braided vector fields' on a quantum hyperboloid. Our method is based on the Lyubashenko-Sudbery construction (see Lyubashenko and Sudbery 1998 J. Math. Phys. 393487 and references therein) and it consists in realizing its generators (braided analogs of hyperbolic infinitesimal rotations) via those of the quantum group $U_{q}(s l(2))$. Our main result consists in showing that the space of braided vector fields is a projective module over the coordinate algebra of the quantum hyperboloid.

PACS numbers: 02.20.Uw, 02.40.Gh

1. Introduction

Let us consider a sphere $S_{r}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=r^{2}, r>0\right\}$ embedded in the Euclidean space $\mathbb{R}^{3} \cong \operatorname{so}(3)^{*}$ as an orbit of action of the group $S O$ (3). Also, we endow the coordinate algebra $\mathbb{K}\left[\mathbb{R}^{3}\right]$ of the space \mathbb{R}^{3} with a $S O$ (3)-covariant Poisson bracket:

$$
\{x, y\}=z, \quad\{y, z\}=x, \quad\{z, x\}=y .
$$

Hereafter, $\mathbb{K}=\mathbb{C}($ or $\mathbb{R})$ is the ground field, the notation $\mathbb{K}[\mathcal{M}]$ stands for the coordinate algebra of a given regular affine algebraic variety \mathcal{M}.

Then the operators $X=\{x, \cdot\}, Y=\{y, \cdot\}, Z=\{z, \cdot\}$ are infinitesimal rotations. Their explicit form is

$$
X=z \partial_{y}-y \partial_{z}, \quad Y=x \partial_{z}-z \partial_{x}, \quad Z=y \partial_{x}-x \partial_{y}
$$

They are tangent to the spheres S_{r}^{2} and subject to the relation

$$
\begin{equation*}
x X+y Y+z Z=0 \tag{1.1}
\end{equation*}
$$

Consider the coordinate algebra of the sphere S_{r}^{2}

$$
\mathbb{K}\left[S_{r}^{2}\right]=\mathbb{K}\left[\mathbb{R}^{3}\right] /\left\langle x^{2}+y^{2}+z^{2}-r^{2}\right\rangle
$$

Hereafter $\langle I\rangle$ stands for the two-sided ideal generated by a set I. The space Vect $\left(S_{r}^{2}\right)$ of all vector fields on a sphere (with coefficients from $\mathbb{K}\left[S_{r}^{2}\right]$), treated as a $\mathbb{K}\left[S_{r}^{2}\right]$-module, is the quotient

$$
M=K\left[S_{r}^{2}\right]^{\oplus 3} / \bar{M}
$$

of the free $\mathbb{K}\left[S_{r}^{2}\right]$-module $\mathbb{K}\left[S_{r}^{2}\right]^{\oplus 3}$ over the submodule $\bar{M}=\left\{\varphi(x X+y Y+z Z), \forall \varphi \in \mathbb{K}\left[S_{r}^{2}\right]\right\}$.
It is not difficult to see that the module \bar{M} is projective. Indeed the matrix

$$
\bar{e}=\frac{1}{r^{2}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\left(\begin{array}{lll}
x & y & z
\end{array}\right)
$$

defines an idempotent such that $\bar{M}=\mathbb{K}\left[S_{r}^{2}\right]^{\oplus 3} \bar{e} \subset \mathbb{K}\left[S_{r}^{2}\right]^{\oplus 3}$. (Hereafter all modules are left.) Therefore the $\mathbb{K}\left[S_{r}^{2}\right]$-module M can be realized as a submodule:

$$
M=\mathbb{K}\left[S_{r}^{2}\right]^{\oplus 3} e \subset \mathbb{K}\left[S_{r}^{2}\right]^{\oplus 3}
$$

where $e=I d-\bar{e}$ is the complementary idempotent. We call the $\mathbb{K}\left[S_{r}^{2}\right]$-module M tangent. In contrast to other $\mathbb{K}\left[S_{r}^{2}\right]$-modules on the tangent module, an action $M \otimes \mathbb{K}\left[S_{r}^{2}\right] \longrightarrow \mathbb{K}\left[S_{r}^{2}\right]$ is defined. This action consists in applying a vector field to a function.

In a similar manner the tangent module on a hyperboloid

$$
\begin{equation*}
\mathrm{H}_{\rho}^{2}=\left\{(b, g, c) \in \mathbb{R}^{3} \mid g^{2}+4 b c=\rho^{2}, \rho \neq 0\right\} \tag{1.2}
\end{equation*}
$$

can be defined. The main goal of this paper is to explicitly define q-analogs of vector fields tangent to this hyperboloid. Note that if $\mathbb{K}=\mathbb{R}$ and ρ is real, we get a one-sheeted hyperboloid. If ρ is purely imaginary, we get a two-sheeted hyperboloid. However, if $\mathbb{K}=\mathbb{C}$ we allow ρ to take any non-trivial value. Let us emphasize that we prefer to deal with a q-analog of a hyperboloid since a q-analog of a sphere (the so-called Podles sphere) cannot be realized as a real algebra.

Our hyperboloid is treated to be an orbit $\mathrm{H}_{\rho}^{2} \hookrightarrow \operatorname{sl}(2)^{*}$ of the coadjoint action of the Lie algebra $s l(2)$. Vector fields arising from this coadjoint action are tangent to all orbits in $s l(2)^{*}$ and they will be called tangent vector fields. (Also, they are the Poisson vector field w.r.t. the linear Poisson-Lie bracket defined on the space $s l(2)^{*}$.) Below, we introduce braided analogs of these vector fields. They are in a sense tangent to a quantum hyperboloid and form a projective module over the algebra $\mathbb{K}_{q}\left[\mathrm{H}_{\rho}^{2}\right]$.

To define the space $\operatorname{Vect}\left(\mathrm{H}_{\rho}^{2}\right)$ of all vector fields on a hyperboloid, we apply the above scheme to the space $\mathbb{R}^{3} \cong \operatorname{sl}(2)^{*}$ endowed with an action of the group $\operatorname{SL}(2)$. The corresponding hyperbolic infinitesimal rotations B, G, C tangent to the hyperboloid (1.2) span the space Vect $\left(\mathrm{H}_{\rho}^{2}\right)$ and are subject to an analog of the relation (1.1):

$$
\begin{equation*}
2 c B+g G+2 b C=0 \tag{1.3}
\end{equation*}
$$

A quantum analog of the algebra $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$ is well known (it can easily be obtained from the property that this algebra is $U_{q}(s l(2))$-covariant). Moreover, this algebra can be introduced to be an appropriate quotient of the so-called q-Minkowski space algebra $\mathbb{K}_{q}\left[\mathbb{R}^{4}\right]$ (as defined in [CW1, CW2, OS, MM, M, K]) which is a particular case of reflection equation algebra (REA). These vector fields are associated with the algebra $\mathbb{K}_{q}\left[\mathrm{H}_{\rho}^{2}\right]$.

Let \mathcal{L} be the space spanned by the generators of $\mathbb{K}_{q}\left[\mathbb{R}^{4}\right]$ and $\mathcal{S} \mathcal{L}=\operatorname{span}(b, g, c)$ be a three-dimensional subspace of the space \mathcal{L}. We need a braided analog $[,]_{q}: \mathcal{S} \mathcal{L}^{\otimes 2} \longrightarrow \mathcal{S} \mathcal{L}$ of the $s l(2)$ Lie bracket. By using this q-bracket we define 'braided tangent vector fields'
B_{q}, G_{q}, C_{q} following the classical pattern. They are tangent to the quantum hyperboloid and subject to an analog of the relation (1.3):

$$
\begin{equation*}
\left(1+q^{-2}\right) b C_{q}+g G_{q}+\left(q^{2}+1\right) c B_{q}=0 \tag{1.4}
\end{equation*}
$$

The main difficulty is then of extending these braided vector fields well defined on $\mathcal{S L}$ to $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ preserving the relation (1.4).

In [A] and [DG] a non-constructive method is suggested using a family of $U_{q}(s l(2))$ covariant projectors $P_{k}\left(k \in \mathbb{N}^{*}\right.$ i.e.: k is a strictly positive integer) defined as polynomials in elements using a braiding of the Birman-Murakamin-Wenzl type. (A way of constructing such operators P_{k} is described in [OP].) As a result, our braided vector fields are well defined on $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ but it is very difficult to calculate their action on elements of $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ of higher degree than 1 .

Thus, in this paper we propose, using the Lyubashenko-Sudbery embedding of $\operatorname{sl}(2)_{q}$ in the QG $U_{q}(s l(2))$ (see [W] and [LS]), to define this extension and then to deduce an explicit representation of our vector fields knowing the representation theory of $s l(2)_{q}$ in [DS].

Note that these braided vector fields are useful tools to define q-analogs of the Laplace and Maxwell operators on non-commutative algebras (see [DG]), and the main interest of our construction is that it helps to better understand the action of our braided vector fields on $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$. Consequently, we think it could facilitate the study of the q-analogs of the Laplace and Maxwell operators defined in [DG].

2. Vector fields on a classical hyperboloid

Let us consider the coordinate algebra $\mathbb{K}\left[\mathbb{R}^{3}\right]$ endowed with a basis $\{b, g, c\}$ and a $S L(2)$ covariant Poisson bracket:

$$
\{g, b\}=2 b, \quad\{g, c\}=-2 c, \quad\{b, c\}=g
$$

The corresponding Poisson fields are

$$
B=\{b, .\}=g \partial_{c}-2 b \partial_{g}, \quad G=\{g, .\}=2 b \partial_{b}-2 c \partial_{c}, \quad C=\{c, .\}=-g \partial_{b}+2 c \partial_{g} .
$$

They are tangent to hyperboloids H_{ρ}^{2} and subject to the relation

$$
\begin{equation*}
2 c B+g G+2 b C=0 \tag{2.1}
\end{equation*}
$$

The commutation relations for B, G, C are

$$
\left\{\begin{array}{l}
G B-B G=2 B \tag{2.2}\\
B C-C B=G \\
C G-G C=2 C
\end{array}\right.
$$

These operators in the basis $\{b,-g,-c\}$ are

$$
B=\left(\begin{array}{ccc}
0 & 2 & 0 \tag{2.3}\\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad G=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right), \quad C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right)
$$

Consider the coordinate algebra of a hyperboloid H_{ρ}^{2} :

$$
\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]=\mathbb{K}\left[\mathbb{R}^{3}\right] /\left\langle 4 b c+g^{2}-\rho^{2}\right\rangle, \quad \rho \neq 0
$$

The space Vect $\left(\mathrm{H}_{\rho}^{2}\right)$ of all vector fields on this hyperboloid (with a coefficient from $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$), treated as a $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$-module, is the quotient

$$
M=\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]^{\oplus 3} / \bar{M}
$$

of the free $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$-module $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]^{\oplus 3}$ over the submodule

$$
\bar{M}=\left\{\varphi(2 c B+g G+2 b C), \forall \varphi \in \mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]\right\} .
$$

It is not difficult to see that the module \bar{M} is projective. Indeed, the matrix

$$
\bar{e}=\frac{1}{\rho^{2}}\left(\begin{array}{c}
2 c \\
g \\
2 b
\end{array}\right)\left(\begin{array}{lll}
b & g & c
\end{array}\right)
$$

defines an idempotent such that $\bar{M}=\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]^{\oplus 3} \bar{e}$. Therefore the $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$-module M can be realized as a submodule

$$
M=\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]^{\oplus 3} e \subset \mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]^{\oplus 3}
$$

where $e=I d-\bar{e}$ is the complementary idempotent.
The $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$-module M is called tangent. In contrast to other $\mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$-modules on the tangent module, an action $M \otimes \mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right] \rightarrow \mathbb{K}\left[\mathrm{H}_{\rho}^{2}\right]$ is defined. It consists in applying a vector field to a function.

Let us fix an integer $k \in \mathbb{N}^{*}$ and consider the vector space:

$$
V_{k}=\operatorname{span}\left(b^{k}, C\left(b^{k}\right), C^{2}\left(b^{k}\right), \ldots, C^{2 k}\left(b^{k}\right)\right)
$$

(Observe that $\operatorname{dim}\left(V_{k}\right)=2 k+1$.)
We denote by $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the $n \times n$ diagonal matrices, by $\operatorname{diag}_{+}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ the $n \times n$ matrices having possibly non-zero elements a_{1}, \ldots, a_{n-1} only on the first overdiagonal and by diag_ $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ the $n \times n$ matrices having possibly non-zero elements a_{1}, \ldots, a_{n-1} only on the first subdiagonal.

In the basis $\left\{b^{k}, \frac{1}{1!} C\left(b^{k}\right), \frac{1}{2!} C^{2}\left(b^{k}\right), \ldots, \frac{1}{(2 k)!} C^{2 k}\left(b^{k}\right)\right\}$ of V_{k} the operators B, G, C are, respectively, represented by the $(2 k+1) \times(2 k+1)$ matrices B^{k}, G^{k}, C^{k} :

$$
\begin{align*}
& B^{k}=\operatorname{diag}_{+}(2 k, 2 k-1,2 k-2, \ldots, 1) \tag{2.4}\\
& G^{k}=\operatorname{diag}(2 k, 2 k-2,2 k-4, \ldots,-2 k) \tag{2.5}\\
& C^{k}=\operatorname{diag}_{-}(1,2,3, \ldots, 2 k) \tag{2.6}
\end{align*}
$$

Thus, the vector fields B, G, C being restricted to the component V_{k} realize the finitedimensional representation $\rho_{k}: \operatorname{sl}(2) \longrightarrow \operatorname{End}\left(V_{k}\right)$ of the algebra $s l(2)$ defined by the matrices (2.4)-(2.6). The restriction of (2.2) on V_{k} gives us

$$
\left\{\begin{array}{l}
G^{k} B^{k}-B^{k} G^{k}=2 B^{k} \tag{2.7}\\
B^{k} C^{k}-C^{k} B^{k}=G^{k} \\
C^{k} G^{k}-G^{k} C^{k}=2 C^{k}
\end{array}\right.
$$

So the operator B can be defined as a collection $\left\{B^{k}, k \in \mathbb{N}^{*}\right\}$ and similarly for those G and C. Besides, it follows from the definition that $B(1)=G(1)=C(1)=0$. Also, as we said the operators B, G, C are subject to the relation (2.1) and they generate a projective module M. Our main goal consists in constructing q-analogs of these operators.

3. Quantum hyperboloid via REA

There exists different ways of introducing quantum orbits. In this section, we define a quantum hyperboloid algebra as a quotient of the so-called REA. First, let us introduce this algebra.

Let V be a vector space over the ground field $\mathbb{K}=\mathbb{C}$ or \mathbb{R} and $\mathrm{R}: V^{\otimes 2} \rightarrow V^{\otimes 2}$ be an invertible operator satisfying the braid equation

$$
(\mathrm{R} \otimes \mathrm{Id})(\mathrm{Id} \otimes \mathrm{R})(\mathrm{R} \otimes \mathrm{Id})=(\mathrm{Id} \otimes \mathrm{R})(\mathrm{R} \otimes \mathrm{Id})(\mathrm{Id} \otimes \mathrm{R})
$$

Such a solution is called braiding. (Note that R is usually denoted by \hat{R}.) If moreover, R satisfies the relation

$$
(q I d-\mathrm{R})\left(q^{-1} I d+\mathrm{R}\right)=0, \quad q \in \mathbb{K}
$$

R is called a Hecke symmetry for $q \neq 1$ and an involutive symmetry for $q=1$. In the following q is assumed to be generic. This means that q can take any value from \mathbb{K} apart from those from a countable subset (which does not contain 1). Observe that for the QG $U_{q}(s l(2))$ (we will recall the definition of $U_{q}(s l(2))$ at the beginning of section 4) generic means $q \notin\{0, i,-i\}$ (see [RT]).

Fix a basis $\left\{x_{i}\right\} \in V, 1 \leqslant i \leqslant n=\operatorname{dim} V$ and the corresponding basis $\left\{x_{i} \otimes x_{j}\right\}$ in the space $V^{\otimes 2}$. Then the operator R can be identified with a matrix.

Example 1. Let $n=2$. Fix a basis in which the standard generators of the QG $U_{q}(s l(2))$ have the classical form

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad K=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Then the Hecke symmetry, which is the image of the universal quantum R-matrix composed with the usual flip, is the following:

$$
R_{q}=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \tag{3.1}\\
0 & q-q^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

Example 2. A natural generalization of the previous example for $n>2$ is

$$
\begin{equation*}
\mathrm{R}=\sum_{i, j} q^{\delta_{i j}} h_{i}^{j} \otimes h_{j}^{i}+\sum_{i<j}\left(q-q^{-1}\right) h_{i}^{i} \otimes h_{j}^{j} \tag{3.2}
\end{equation*}
$$

where $\left\{h_{i}^{j}\right\}$ is the base in the space of left endomorphisms of the basic space V such that $h_{i}^{j}\left(x_{k}\right)=\delta_{k}^{j} x_{i}$. In the matrix form, it reads

$$
\mathrm{R}_{i j}^{k l}=q^{\delta_{k l}} \delta_{i}^{l} \delta_{j}^{k}+\left(q-q^{-1}\right) \Theta(j-i) \delta_{i}^{k} \delta_{j}^{l}
$$

where $\Theta(i)=1$ for $i>0$ and $\Theta(i)=0$ for $i \leqslant 0$.
Definition 3. The algebra generated by the unity and generators $l_{i}^{j}, 1 \leqslant i, j \leqslant n$ subject to the system

$$
\begin{equation*}
\mathrm{R}(L \otimes \mathrm{Id}) \mathrm{R}(\mathrm{~L} \otimes \mathrm{Id})-(\mathrm{L} \otimes \mathrm{Id}) \mathrm{R}(\mathrm{~L} \otimes \mathrm{Id})) \mathrm{R}=0 \tag{3.3}
\end{equation*}
$$

where $L=\left\|l_{i}^{j}\right\|$ is a matrix with the entries l_{i}^{j} is called the reflection equation algebra (REA). It is denoted by $\mathcal{L}(q)$.

Example 4. Go back to example 1. So, R is the form of the matrix (3.1).

Let $L=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}l_{1}^{1} & l_{1}^{2} \\ l_{2}^{1} & l_{2}^{2}\end{array}\right)$ be the matrix coming in (3.3):

$$
\begin{aligned}
&\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & q-q^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right)\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & q-q^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right) \\
&-\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right)\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & q-q^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{array}\right) \\
& \times\left(\begin{array}{ccccc}
q & 0 & 0 & 0 \\
0 & q-q^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)=0 .
\end{aligned}
$$

By explicitly computing this system we obtain

$$
\begin{align*}
& q a b-q^{-1} b a=0, \quad q(b c-c b)=\left(q-q^{-1}\right) a(d-a), \\
& q c a-q^{-1} a c=0, \quad q(c d-d c)=\left(q-q^{-1}\right) c a, \tag{3.4}\\
& a d-d a=0,
\end{align*}
$$

The algebra $\mathcal{L}(q)$ corresponding to this Hecke symmetry R_{q} is called the q-Minkowski space algebra. In this case it is also denoted by $\mathbb{K}_{q}\left[\mathbb{R}^{4}\right]$.

There exists an automorphism $C: V \rightarrow V$ (in a matrix form $C=\left(C_{i}^{j}\right)$) such that the elements $\operatorname{Tr}\left(C L^{k}\right), k=0,1,2, \ldots$ are central in the algebra $\mathcal{L}(q)$ (here Tr is the usual trace). The quantities $\operatorname{Tr}\left(C L^{k}\right)$ are also denoted by $\operatorname{Tr}_{q} L^{k}$ and called q-trace (or quantum trace) of the matrices L^{k}. We consider the q-trace Tr_{q} as an operator from $\operatorname{Mat}_{n}(A)$ to A where $A=\mathcal{L}(q)$. Note that the matrix C is unique up to a factor.

By assuming R to be as in example 1 and with an appropriate normalization of this matrix we obtain $C=\left(\begin{array}{cc}q^{-1} & 0 \\ 0 & q\end{array}\right)$ and therefore $\operatorname{Tr}_{q} L=q^{-1} a+q d$.

Now, we rewrite the system (3.4) in the basis $\{\ell, b, g, c\}$ where $\ell=q^{-1} a+q d, g=a-d$:

$$
\begin{align*}
& q^{2} g b-b g=-\left(q-q^{-1}\right) \ell b, \quad b \ell=\ell b, \\
& \left(q^{2}+1\right)(b c-c b)+\left(q^{2}-1\right) g^{2}=-\left(q-q^{-1}\right) \ell g, \quad g \ell=\ell g \tag{3.5}\\
& q^{2} c g-g c=-\left(q-q^{-1}\right) \ell c, \quad c \ell=\ell c .
\end{align*}
$$

Hereafter, $n_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$ is the q-analog of the number $n \in \mathbb{N}$.
Now, we introduce the algebra $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]=\mathbb{K}_{q}\left[\mathbb{R}^{4}\right] /\langle\ell\rangle$ which is a braided analog of the coordinate algebra $\mathbb{K}\left[\mathbb{R}^{3}\right]$. It is generated by three elements b, g, c subject to

$$
\begin{equation*}
q^{2} g b-b g=0, \quad\left(q^{2}+1\right)(b c-c b)+\left(q^{2}-1\right) g^{2}=0, \quad q^{2} c g-g c=0 \tag{3.6}
\end{equation*}
$$

The generating spaces $\operatorname{span}(a, b, c, d)$ and $\operatorname{span}(b, g, c)$ of the algebras $\mathbb{K}_{q}\left[\mathbb{R}^{4}\right]$ and $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ are, respectively, denoted by \mathcal{L} and $\mathcal{S L}$.

Consider the central element $\operatorname{Tr}_{q} L^{2} \in \mathbb{K}_{q}\left[\mathbb{R}^{4}\right]$. In the basis $\{b, g, c, \ell\}$ its explicit form is

$$
\operatorname{Tr}_{q} L^{2}=q^{-1} b c+q c b+2_{q}^{-1}\left(g^{2}+\ell^{2}\right)
$$

Its image in the algebra $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ is $q^{-1} b c+2_{q}^{-1} g^{2}+q c b$. In what follows its multiple

$$
q^{-1} 2_{q} b c+g^{2}+q 2_{q} c b
$$

is denoted by Cas_{q}. It is a central element in this algebra. So, it is a braided analog of the $s l(2)$ Casimir element Cas $=2 b c+g^{2}+2 c b$. The quotient of the algebra $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ over the ideal generated by the element $\mathrm{Cas}_{q}-\rho^{2}$ is called the quantum hyperboloid if $\rho \neq 0$. It is $\mathbb{K}_{q}\left[\mathrm{H}_{\rho}^{2}\right]$. Observe that Cas_{q} is the unique quadratic element (up to a factor) in $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ which is $U_{q}(s l(2))$-invariant.

4. The embedding of $s l(2)_{q}$ in the QG $U_{q}(s l(2))$

Recall that the QG $U_{q}(s l(2))$ is generated by the unit and four generators K, K^{-1}, X, Y subject to the relations

$$
\begin{align*}
& K^{\epsilon} K^{-\epsilon}=1, \quad K^{\epsilon} X=q^{2 \epsilon} X K^{\epsilon}, \quad K^{\epsilon} Y=q^{-2 \epsilon} Y K^{\epsilon} \\
& X Y-Y X=\frac{K-K^{-1}}{q-q^{-1}}, \quad \epsilon= \pm 1 . \tag{4.1}
\end{align*}
$$

There exists a coproduct Δ and an antipode S which (together with the standard counit) endow this algebra with a Hopf structure:

$$
\begin{align*}
& \Delta\left(K^{\epsilon}\right)=K^{\epsilon} \otimes K^{\epsilon}, \quad \Delta(X)=X \otimes K^{-1}+1 \otimes X, \quad \Delta(Y)=Y \otimes 1+K \otimes Y \tag{4.2}\\
& S\left(K^{\epsilon}\right)=K^{-\epsilon}, \quad S(X)=-X K, \quad S(Y)=-K^{-1} Y . \tag{4.3}
\end{align*}
$$

Let us define an action of the $\mathrm{QG} U_{q}(s l(2))$ on the space $\mathcal{S} \mathcal{L}$ as follows:

$$
\begin{array}{lcc}
X(b)=0, & X(g)=-2 q b, & X(c)=q g, \\
K^{\epsilon}(b)=q^{2 \epsilon} b, & K^{\epsilon}(g)=g, & K^{\epsilon}(c)=q^{-2 \epsilon} c, \\
Y(b)=-g, & Y(g)=q^{-1} 2_{q} c, & Y(c)=0 . \tag{4.6}
\end{array}
$$

The reader can easily check that the structure of the algebra $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ is compatible with the action of the QG $U_{q}(s l(2))$ extended to higher power of $\mathcal{S} \mathcal{L}$ via the coproduct Δ. In order to do this, it suffices to check that the system (3.6) is invariant w.r.t. the QG $U_{q}(s l(2))$.

Considering the Hopf algebra $\left(U_{q}(s l(2)), \Delta, S\right)$, let us conceive the 'quantum adjoint' action of the QG on itself defined as follows (hereafter, we use the Sweedler notation):

$$
\forall U, V \in U_{q}(s l(2)): \quad U(V)=U_{1} V S\left(U_{2}\right) \quad \text { with } \quad \Delta(U)=U_{1} \otimes U_{2}
$$

Proposition 5. The vector space $\operatorname{sl}(2)_{q}$ generated in the algebra $U_{q}(s l(2))$ by X_{+}, X_{0}, X_{-} with

$$
X_{+}=X, \quad X_{0}=q^{2} X Y-Y X, \quad X_{-}=q K^{-1} Y
$$

is closed under the action of the $Q G U_{q}(s l(2))$ and is by consequence isomorphic to the matrix representation.
Proof. See [LS]. However, for the convenience of the reader, we can prove this proposition with our notations. The formulae that we use for this proof are (4.1)-(4.3).

We place ourselves in $U_{q}(s l(2))$ with the coproduct Δ and its associated antipode S. We can then define an ad-action on $U_{q}(s l(2))$ using Δ and S.

Let $X_{+}=X$:

$$
X\left(X_{+}\right)=X(-X K)+X X K=-X^{2} K+X^{2} K=0
$$

Let $X_{0}=-Y\left(X_{+}\right)$:

$$
Y\left(X_{+}\right)=K X\left(-K^{-1} Y\right)+Y X=-\left(q^{2} X Y-Y X\right)
$$

So $X_{0}=q^{2} X Y-Y X$.
Let now $X_{-}=\frac{q}{2_{q}} Y\left(X_{0}\right)$:

$$
Y\left(X_{0}\right)=q^{2}(Y X-X Y) Y+Y(X Y-Y X)
$$

So

$$
\left(q-q^{-1}\right) Y\left(X_{0}\right)=q^{2}\left(K^{-1}-K\right) Y+Y\left(K-K^{-1}\right)=K^{-1}\left(q^{2}-q^{-2}\right) Y
$$

and then $X_{-}=q K^{-1} Y$.
It is easy to see that

$$
\begin{aligned}
& K\left(X_{+}\right)=q^{2} X_{+}, \quad K\left(X_{0}\right)=X_{0}, \quad K\left(X_{-}\right)=q^{-2} X_{-} \\
& Y\left(X_{-}\right)=q\left(Y\left(-K^{-1} Y\right)+Y K^{-1} Y\right)=0 \\
& X\left(X_{-}\right)=q\left(K^{-1} Y(-X K)+X K^{-1} Y K\right)=q\left(q^{2} X Y-Y X\right)=q X_{0} \\
& X\left(X_{0}\right)=q^{2} X Y(-X K)+q^{2} X^{2} Y K-Y X(-X K)-X Y X K \\
& X\left(X_{0}\right)=K^{-1} \frac{q^{2} X K-q^{2} X K^{-1}-K X+K^{-1} X}{q-q^{-1}} K=-2_{q} X_{+} .
\end{aligned}
$$

Proposition 6. The generators X_{+}, X_{0}, X_{-}satisfy

$$
\left\{\begin{array}{l}
q^{2} X_{0} X_{+}-X_{+} X_{0}=C m r X_{+} \\
\left(q^{2}+1\right)\left(X_{+} X_{-}-X_{-} X_{+}\right)+\left(q^{2}-1\right) X_{0}^{2}=\operatorname{Cmr} X_{0} \\
q^{2} X_{-} X_{0}-X_{0} X_{-}=\operatorname{Cmr} X_{-}
\end{array}\right.
$$

with $C m r$ being a central element in the $Q G U_{q}(s l(2))$:

$$
C m r=\left(q^{4}-q^{2}+1\right) X Y-q^{2} Y X-\frac{1}{q-q^{-1}} K+\frac{q^{4}}{q-q^{-1}} K^{-1}
$$

Proof. See [LS].
Corollary 7. Let us consider an irreducible matrix representation π of the $Q G U_{q}(s l(2))$ then

$$
\begin{align*}
& \left\{\begin{array}{l}
q^{2} \pi\left(X_{0}\right) \pi\left(X_{+}\right)-\pi\left(X_{+}\right) \pi\left(X_{0}\right)=C m r_{\pi} \pi\left(X_{+}\right) \\
\left(q^{2}+1\right)\left(\pi\left(X_{+}\right) \pi\left(X_{-}\right)-\pi\left(X_{-}\right) \pi\left(X_{+}\right)\right)+\left(q^{2}-1\right) \pi\left(X_{0}\right)^{2}=C m r_{\pi} \pi\left(X_{0}\right) \\
q^{2} \pi\left(X_{-}\right) \pi\left(X_{0}\right)-\pi\left(X_{0}\right) \pi\left(X_{-}\right)=C m r_{\pi} \pi\left(X_{-}\right)
\end{array}\right. \tag{4.7}\\
& \text {with } C m r_{\pi} \in \mathbb{K} .
\end{align*}
$$

5. Braided analog of tangent vector fields

Let us endow the space $\mathcal{S L}$ with a braided analog of the Lie bracket $s l(2)$. In order to do so, we extend the action of the $\mathrm{QG} U_{q}(s l(2))$ to the space $\mathcal{S} \mathcal{L} \otimes \mathcal{S} \mathcal{L}$ and decompose it into a direct sum of irreducible $U_{q}(s l(2))$ submodules $\mathcal{S} \mathcal{L} \otimes \mathcal{S} \mathcal{L}=V_{0} \oplus V_{1} \oplus V_{2}$, where the subscript stands for the spin. Then the operator

$$
[,]: \mathcal{S L} \otimes \mathcal{S} \mathcal{L} \rightarrow \mathcal{S} \mathcal{L}
$$

is a $U_{q}(s l(2))$-morphism iff it is trivial on the components V_{0} and V_{2}, and it is an isomorphism between V_{1} and $\mathcal{S L}$. By this condition, the bracket is defined in the unique (up to a factor) way.

Its multiplication table is as follows:
$[b, b]=0$,
$[b, g]=-\omega b$,
$[b, c]=\omega \frac{q}{2_{q}} g$,
$[g, b]=\omega q^{2} b$,
$[g, g]=\omega\left(q^{2}-1\right) g$,
$[g, c]=-\omega c$,
$[c, b]=-\omega \frac{q}{2_{q}} g$,

$$
[c, g]=\omega q^{2} c, \quad[c, c]=0
$$

Here ω is an arbitrary factor.
Introduce q-analogs of the adjoint operators as follows $B_{q}=\operatorname{ad}(b), G_{q}=a d(g), C_{q}=$ $a d(c)$, where the action $a d$ is defined via the above bracket. These operators in the basis $\left\{b,-g,-q^{-1} c\right\}$ are
$B_{q}=\omega\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 2_{q}^{-1} \\ 0 & 0 & 0\end{array}\right) \quad G_{q}=\omega\left(\begin{array}{ccc}q^{2} & 0 & 0 \\ 0 & q^{2}-1 & 0 \\ 0 & 0 & -1\end{array}\right) \quad C_{q}=\omega\left(\begin{array}{ccc}0 & 0 & 0 \\ q 2_{q}^{-1} & 0 & 0 \\ 0 & q^{3} & 0\end{array}\right)$.

Thus, these operators are subject to

$$
\left\{\begin{array}{l}
q^{2} G_{q} B_{q}-B_{q} G_{q}=\theta B_{q} \tag{5.2}\\
\left(q^{2}+1\right)\left(B_{q} C_{q}-C_{q} B_{q}\right)+\left(q^{2}-1\right) G_{q}^{2}=\theta G_{q} \\
q^{2} C_{q} G_{q}-G_{q} C_{q}=\theta C_{q}
\end{array}\right.
$$

provided $\omega=\theta\left(q^{4}-q^{2}+1\right)^{-1}$.
We deduce the classical limit (2.3) from (5.1) for $q=1, \theta=2$.
Proposition 8. The operators B_{q}, G_{q}, C_{q} (defined on $\mathcal{S L}$) are subject to

$$
\begin{equation*}
q^{-1} 2_{q} b C_{q}+g G_{q}+q 2_{q} c B_{q}=0 \tag{5.3}
\end{equation*}
$$

Proof. It is straightforward.
We now consider the main goal of this paper. We want to extend the operators B_{q}, G_{q}, C_{q} to the algebra $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$, preserving the relation (5.3). A method is suggested in $[\mathrm{A}]$ and [DG]. Our method is different because we use the Lyubashenko-Sudbery construction. We get then an explicit extension formula of our operators B_{q}, G_{q}, C_{q} via the coproduct Δ of the QG $U_{q}(s l(2))$.

We can see that on $\mathcal{S} \mathcal{L}$:

$$
\begin{aligned}
& B_{q}=\tau X=\tau X_{+}, \quad G_{q}=\tau\left(q^{2} X Y-Y X\right)=\tau X_{0}, \\
& C_{q}=\tau q K^{-1} Y=\tau X_{-} \quad \text { with } \quad \tau=2_{q}^{-1} \omega .
\end{aligned}
$$

And X_{+}, X_{0}, X_{-}are well defined on $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ because X, K, Y are defined on $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ via the coproduct Δ.

This leads us to the main result of this paper.
Theorem 9. On $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$, the operators X_{+}, X_{0}, X_{-}are subject to

$$
\begin{equation*}
q^{-1} 2_{q} b X_{-}+g X_{0}+q 2_{q} c X_{+}=0 \tag{5.4}
\end{equation*}
$$

Proof. It is straightforward from (4.2), (4.4) and (4.5) that

$$
\forall k \in \mathbb{N}^{*}: \quad X\left(b^{k}\right)=0 \quad \text { and } \quad K\left(b^{k}\right)=q^{2 k} b^{k}
$$

So b^{k} is a highest weight vector.

We note that $\operatorname{Cas}_{q}=q^{-1} 2_{q} b X_{-}+g X_{0}+q 2_{q} c X_{+}$.
Let us show that

$$
\forall k \in \mathbb{N}^{*}: \quad \operatorname{Cas}_{q}\left(b^{k}\right)=0
$$

From (4.1), (4.5) and (3.6):

$$
\begin{aligned}
\operatorname{Cas}_{q}\left(b^{k}\right) & =q^{-1} 2_{q} b q K^{-1} Y\left(b^{k}\right)+g\left(q^{2} X Y-Y X\right)\left(b^{k}\right)+q 2_{q} c X\left(b^{k}\right) \\
& =2_{q} b K^{-1} Y\left(b^{k}\right)+q^{2} g X Y\left(b^{k}\right) \\
& =2_{q} b q^{2} Y K^{-1}\left(b^{k}\right)+q^{2} g\left(Y X+\frac{K-K^{-1}}{q-q^{-1}}\right)\left(b^{k}\right) \\
& =q^{-2 k+2} 2_{q} b Y\left(b^{k}\right)+q^{2}(2 k)_{q} g b^{k} \\
& =q^{-2 k+2} b\left(2_{q} Y\left(b^{k}\right)+(2 k)_{q} b^{k-1} g\right) .
\end{aligned}
$$

We show then by induction on $k \in \mathbb{N}^{*}$ that

$$
\forall k \in \mathbb{N}^{*}: \quad Y\left(b^{k}\right)=-2_{q}^{-1}(2 k)_{q} b^{k-1} g .
$$

The statement holds for $k=1$ from (4.6).
If the statement holds for some $k \in \mathbb{N}^{*}$ then from (4.2), (4.5), (4.6) and (3.6):

$$
\begin{aligned}
Y\left(b^{k+1}\right) & =Y\left(b \cdot b^{k}\right)=Y(b) b^{k}+K(b) Y\left(b^{k}\right) \\
& =-g b^{k}+q^{2} b\left(-2_{q}^{-1}(2 k)_{q} b^{k-1} g\right) \\
& =-q^{-2 k} b^{k} g-q^{2} 2_{q}^{-1}(2 k)_{q} b^{k} g \\
& =-2_{q}^{-1}\left(q^{-2 k} 2_{q}+(2 k)_{q} q^{2}\right) b^{k} g \\
& =-2_{q}^{-1}(2(k+1))_{q} b^{k} g .
\end{aligned}
$$

So, the statement holds for $k+1$ and we deduce that

$$
\forall k \in \mathbb{N}^{*}: \quad \operatorname{Cas}_{q}\left(b^{k}\right)=0
$$

Let $k \in \mathbb{N}^{*}$ and V_{k} be the $U_{q}(s l(2))$ submodule of $\mathcal{S} \mathcal{L}^{\otimes k}$ with the highest vector b^{k}, i.e.,

$$
V_{k}=\operatorname{span}\left(b^{k}, Y\left(b^{k}\right), Y^{2}\left(b^{k}\right), \ldots, Y^{2 k}\left(b^{k}\right)\right)
$$

We consider the following lemma.

Lemma 10.

$$
\forall v \in \mathbb{K}_{q}\left[\mathbb{R}^{3}\right]: \quad Y\left(\operatorname{Cas}_{q}(v)\right)=\operatorname{Cas}_{q}(Y(v))
$$

We conclude from this lemma that

$$
\forall k \in \mathbb{N}^{*}: \quad \operatorname{Cas}_{q}\left(V_{k}\right)=0 .
$$

Now, observe that for a generic q we have $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right] \cong\left(\oplus V_{k}\right) \otimes Z$, where Z is $U_{q}(s l(2))$ invariant. It concludes the proof:

$$
\operatorname{Cas}_{q}\left(\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]\right)=0
$$

It is then easy to extend B_{q}, G_{q}, C_{q} from $\mathcal{S} \mathcal{L}$ to $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ preserving the relation (5.3). Thus, the space of all braided tangent vector fields is treated as a left $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$-module which is the quotient of the free module $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]^{\oplus 3}$ over the submodule generated by the lhs of (5.3).

Recall $\mathrm{Cas}_{q}=q^{-1} 2_{q} b c+g^{2}+q 2_{q} c b$ and observe that $X_{+}\left(\operatorname{Cas}_{q}-\rho^{2}\right)=X_{0}\left(\operatorname{Cas}_{q}-\rho^{2}\right)=X_{-}\left(\operatorname{Cas}_{q}-\rho^{2}\right)=0 \quad$ for $\quad \rho \neq 0$.

Thus, the operators X_{+}, X_{0}, X_{-}, and consequently our braided tangent vector fields B_{q}, G_{q}, C_{q}, are also defined on $\mathbb{K}_{q}\left[\mathrm{H}_{\rho}^{2}\right]$.

Proof of lemma 10.

$$
\operatorname{Cas}_{q}(v)=q^{-1} 2_{q} b q K^{-1} Y(v)+g\left(q^{2} X Y-Y X\right)(v)+q 2_{q} c X(v) .
$$

So from (4.1), (4.2), (4.5) and (4.6):

$$
\begin{aligned}
Y\left(\operatorname{Cas}_{q}(v)\right)= & 2_{q} Y(b) K^{-1} Y(v)+2_{q} K(b) Y K^{-1} Y(v)+Y(g)\left(q^{2} X Y-Y X\right)(v) \\
& +K(g)\left(q^{2} Y X Y-Y^{2} X\right)(v)+q 2_{q} Y(c) X(v)+q 2_{q} K(c) Y X(v) \\
= & -2_{q} g K^{-1} Y(v)+q^{2} 2_{q} b q^{-2} K^{-1} Y(Y(v))+q^{-1} 2_{q} c\left(q^{2} X Y-Y X\right)(v) \\
& +g\left(q^{2} Y X Y-Y^{2} X\right)(v)+q^{-1} 2_{q} c Y X(v) \\
= & -2_{q} g K^{-1} Y(v)+q^{-1} 2_{q} b X_{-}(Y(v))+q 2_{q} c X_{+}(Y(v))-q^{-1} 2_{q} c Y X(v) \\
& +g X_{0}(Y(v))+g\left(-q^{2} \frac{K-K^{-1}}{q-q^{-1}} Y+Y \frac{K-K^{-1}}{q-q^{-1}}\right)(v)+q^{-1} 2_{q} c Y X(v) \\
= & \operatorname{Cas}_{q}(Y(v))-2_{q} g K^{-1} Y(v)+\left(q-q^{-1}\right)^{-1} g\left(-q^{2} K Y+q^{2} K^{-1} Y\right. \\
& \left.+q^{2} K Y-q^{-2} K^{-1} Y\right)(v) \\
= & \operatorname{Cas}_{q}(Y(v))-2_{q} g K^{-1} Y(v)+2_{q} g K^{-1} Y(v)=\operatorname{Cas}_{q}(Y(v)) .
\end{aligned}
$$

6. Representation theory of braided tangent vector fields

Fix the parameter $\theta \in \mathbb{K}$ of (2.7). (For $q=1, \theta=2$.) We know how to extend B_{q}, G_{q}, C_{q} to $\mathbb{K}_{q}\left[\mathbb{R}^{3}\right]$ (and $\mathbb{K}_{q}\left[\mathrm{H}_{\rho}^{2}\right]$) preserving the relation (5.3). We want to define now which is the unique extension which preserves also the relation (2.7). For that, we apply what we know about the representation theory of $s l(2)_{q}$ in [DS] to X_{+}, X_{0}, X_{-}in V_{k}.

Recall that in the basis $\left\{b,-g,-q^{-1} c\right\}$ on $V_{1}=\mathcal{S} \mathcal{L}$, our vector fields B_{q}, G_{q}, C_{q} are defined by the matrices $B_{q}^{1}, G_{q}^{1}, C_{q}^{1}$:

$$
\begin{array}{ll}
B_{q}^{1} & =\tau_{1}\left(\begin{array}{ccc}
0 & 2_{q} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad G_{q}^{1}=\tau_{1}\left(\begin{array}{ccc}
q^{2} 2_{q} & 0 & 0 \\
0 & \left(q^{2}-1\right) 2_{q} & 0 \\
0 & 0 & -2_{q}
\end{array}\right) \tag{6.1}\\
C_{q}^{1} & =\tau_{1}\left(\begin{array}{ccc}
0 & 0 & 0 \\
q & 0 & 0 \\
0 & q^{3} 2_{q} & 0
\end{array}\right)
\end{array}
$$

with $\tau_{1}=2_{q}^{-1} \omega$.
In this basis, our action of $U_{q}(s l(2))$ on $\mathcal{S} \mathcal{L}$ is defined by the following matrices:

$$
X=\left(\begin{array}{ccc}
0 & 2_{q} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad K=\left(\begin{array}{ccc}
q^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & q^{-2}
\end{array}\right), \quad Y=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2_{q} & 0
\end{array}\right)
$$

and we know that
$B_{q}^{1}=\tau_{1} X=\tau_{1} X_{+}, \quad G_{q}^{1}=\tau_{1}\left(q^{2} X Y-Y X\right)=\tau_{1} X_{0}, \quad C_{q}^{1}=\tau_{1} q K^{-1} Y=\tau_{1} X_{-}$.
This leads us to generalize this construction on V_{k} for $k \in \mathbb{N}^{*}$.

$$
\text { Considering the basis }\left\{b^{k}, \frac{1}{1_{q}!} Y\left(b^{k}\right), \frac{1}{2_{q}!} Y^{2}\left(b^{k}\right), \ldots, \frac{1}{(2 k)_{q}!} Y^{2 k}\left(b^{k}\right)\right\}
$$

where $i_{q}!=i_{q} \times(i-1)_{q} \times \cdots \times 2_{q} \times 1_{q}$, we define the operators $B_{q}^{k}, G_{q}^{k}, C_{q}^{k}$ on V_{k} endowed with our basis with the $(2 k+1) \times(2 k+1)$ matrices:

$$
\begin{align*}
& B_{q}^{k}=\tau_{k} \cdot \operatorname{diag}_{+}\left((2 k)_{q},(2 k-1)_{q},(2 k-2)_{q}, \ldots, 2_{q}, 1\right) \tag{6.2}\\
& G_{q}^{k}=\tau_{k} \cdot \operatorname{diag}\left(q^{2}(2 k)_{q}, q^{2} 2_{q}(2 k-1)_{q}-(2 k)_{q}, \ldots, q^{2}(2 k)_{q}-2_{q}(2 k-1)_{q},-(2 k)_{q}\right) \tag{6.3}\\
& C_{q}^{k}=\tau_{k} \cdot \operatorname{diag}_{-}\left(q^{-2 k+3}, q^{-2 k+5} 2_{q}, q^{-2 k+7} 3_{q}, \ldots, q^{2 k+1}(2 k)_{q}\right) \tag{6.4}
\end{align*}
$$

We just used the Lyubashenko-Sudbery construction in our new basis:
$B_{q}^{k}=\tau_{k} X_{+}=\tau_{k} X, \quad G_{q}^{k}=\tau_{k} X_{0}=\tau_{k}\left(q^{2} X Y-Y X\right), \quad C_{q}^{k}=\tau_{k} X_{-}=\tau_{k} q K^{-1} Y$
with the following representation of $U_{q}(s l(2))$ on V_{k} :

$$
\begin{aligned}
& X=\operatorname{diag}_{+}\left((2 k)_{q},(2 k-1)_{q},(2 k-2)_{q}, \ldots, 2_{q}, 1\right) \\
& K=\operatorname{diag}\left(q^{2 k}, q^{2 k-2}, \ldots, q^{-2 k+2}, q^{-2 k}\right) \\
& Y=\operatorname{diag}_{-}\left(1,2_{q}, 3_{q}, \ldots,(2 k-1)_{q},(2 k)_{q}\right)
\end{aligned}
$$

We deduce from the relations (5.4) and (4.7) that the operators $B_{q}^{k}, G_{q}^{k}, C_{q}^{k}$ are subject to (5.3) and (5.2) for appropriate choices of $\tau_{k} \in \mathbb{K}$:

$$
\forall k \in \mathbb{N}^{*}, \quad \tau_{k}=\frac{q^{-2} \theta}{(2 k+2)_{q}-(2 k)_{q}}=\frac{q^{-2} \theta}{q^{2 k+1}+q^{-2 k-1}} .
$$

Remark 11. We can see that $B_{1}^{k}=B^{k}, G_{1}^{k}=G^{k}, C_{1}^{k}=C^{k}$ if we pose $\theta=2$.
Example 12. If $k=2$, we consider the following basis of the vector space V_{2} :

$$
V_{2}=\operatorname{span}\left(b^{2},-q^{2} b g-g b, q g^{2}-q^{3} b c-q^{-1} c b, q g c+q^{-1} c g, q^{-2} c^{2}\right) .
$$

In this basis, we obtain the following representation of our braided vector fields:

$$
\begin{aligned}
B_{q}^{2} & =\tau_{2}\left(\begin{array}{ccccc}
0 & 4_{q} & 0 & 0 & 0 \\
0 & 0 & 3_{q} & 0 & 0 \\
0 & 0 & 0 & 2_{q} & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
G_{q}^{2} & =\tau_{2}\left(\begin{array}{cccccc}
q^{2} 4_{q} & 0 & 0 & 0 & 0 \\
0 & q^{2} 2_{q} 3_{q}-4_{q} & 0 & 0 & 0 \\
0 & 0 & \left(q^{2}-1\right) 2_{q} 3_{q} & 0 & 0 \\
0 & & 0 & 0 & q^{2} 4_{q}-2_{q} 3_{q} & 0 \\
0 & & 0 & 0 & 0 & -4_{q}
\end{array}\right) \\
C_{q}^{2} & =\tau_{2}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
q^{-1} & 0 & 0 & 0 & 0 \\
0 & q 2_{q} & 0 & 0 & 0 \\
0 & 0 & q^{3} 3_{q} & 0 & 0 \\
0 & 0 & 0 & q^{5} 4_{q} & 0
\end{array}\right) .
\end{aligned}
$$

The reader can now calculate what the representations $B_{q}^{k}, G_{q}^{k}, C_{q}^{k}$ on V_{k} for $k>2$ are.

Acknowledgments

I would like to thank Professor Dimitri Gurevich for useful comments and many interesting and informative discussions.

References

[A] Akueson P 2001 Géométrie de l'espace tangent sur l'hyperboloïde quantique Cahiers de topologie et géométrie différentielle catégoriques XLII-1 2-50
[CW1] Carow-Watamura U, Schlieker M, Scholl M and Watamura S 1990 Tensor representation of the quantum group $S L_{q}(2, \mathbb{C})$ and quantum Minkowski space Z. Phys. C 48 159-65
[CW2] Carow-Watamura U, Schlieker M, Scholl M and Watamura S 1991 A quantum Lorentz group Int. J. Mod. Phys. A 6 3081-108
[DG] Dutriaux A and Gurevich D 2008 Maxwell operator on q-Minkowski space and q-hyperboloid algebras J. Phys. A: Math. Theor. 41315203
[DS] Dobrev V K and Sudbery A 1998 Representations of the generalized Lie algebra $s l(2)_{q}$ J. Phys. A: Math. Gen. 31 6635-45
[K] Kulish P P 1995 Representations of q-Minkowski space algebra St Petersburg Math. J. 6365-74
[LS] Lyubashenko V and Sudbery A 1998 Generalized Lie algebras of type A_{n} J. Math. Phys. 39 3487-504
[MM] Majid S and Meyer U 1994 Braided matrix structure of q-Minkowski space and q-Poincare group Z. Phys. C 63 457-75
[M] Meyer U 1996 Wave equations on q-Minkowski space Commun. Math. Phys. 174 249-64
[OP] Ogievetsky O and Pyatov P 2005 Orthogonal and symplectic quantum matrix algebras and Cayley Hamilton theorem for them arXiv:math/0511618
[OS] Ogievetsky O, Schmidke W B, Wess J and Zumino B 1992 q-deformed Poincaré algebra Commun. Math. Phys. 150 495-518
[RT] Reshetikhin N Y, Takhtadzhyan L A and Faddeev L D 1989 Quantization of Lie groups and Lie algebras Algebra i Analiz 1 178-206
[W] Woronowicz S L 1989 Differential calculus on compact matrix pseudogroups (quantum groups) Commun. Math. Phys. 122 125-70

