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Abstract
We introduce a new method of defining a space of ‘braided vector fields’ on
a quantum hyperboloid. Our method is based on the Lyubashenko–Sudbery
construction (see Lyubashenko and Sudbery 1998 J. Math. Phys. 39 3487 and
references therein) and it consists in realizing its generators (braided analogs of
hyperbolic infinitesimal rotations) via those of the quantum group Uq(sl(2)).
Our main result consists in showing that the space of braided vector fields is a
projective module over the coordinate algebra of the quantum hyperboloid.

PACS numbers: 02.20.Uw, 02.40.Gh

1. Introduction

Let us consider a sphere S2
r = {(x, y, z) ∈ R

3|x2 + y2 + z2 = r2, r > 0} embedded in the
Euclidean space R

3 ∼= so(3)∗ as an orbit of action of the group SO(3). Also, we endow the
coordinate algebra K[R3] of the space R

3 with a SO(3)-covariant Poisson bracket:

{x, y} = z, {y, z} = x, {z, x} = y.

Hereafter, K = C (or R) is the ground field, the notation K[M] stands for the coordinate
algebra of a given regular affine algebraic variety M.

Then the operators X = {x, ·}, Y = {y, ·}, Z = {z, ·} are infinitesimal rotations. Their
explicit form is

X = z∂y − y∂z, Y = x∂z − z∂x, Z = y∂x − x∂y.

They are tangent to the spheres S2
r and subject to the relation

xX + yY + zZ = 0. (1.1)

Consider the coordinate algebra of the sphere S2
r

K
[
S2

r

] = K[R3]/〈x2 + y2 + z2 − r2〉.
1751-8113/09/445203+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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Hereafter 〈I 〉 stands for the two-sided ideal generated by a set I. The space Vect
(
S2

r

)
of

all vector fields on a sphere (with coefficients from K[S2
r ]), treated as a K

[
S2

r

]
-module, is the

quotient

M = K
[
S2

r

]⊕3/
M

of the free K
[
S2

r

]
-module K

[
S2

r

]⊕3
over the submodule M = {

ϕ(xX+yY +zZ),∀ϕ ∈ K
[
S2

r

]}
.

It is not difficult to see that the module M is projective. Indeed the matrix

e = 1

r2

⎛
⎝x

y

z

⎞
⎠ (

x y z
)

defines an idempotent such that M = K
[
S2

r

]⊕3
e ⊂ K

[
S2

r

]⊕3
. (Hereafter all modules are left.)

Therefore the K
[
S2

r

]
-module M can be realized as a submodule:

M = K
[
S2

r

]⊕3
e ⊂ K

[
S2

r

]⊕3
,

where e = Id − e is the complementary idempotent. We call the K
[
S2

r

]
-module M tangent.

In contrast to other K
[
S2

r

]
-modules on the tangent module, an action M ⊗ K

[
S2

r

] −→ K
[
S2

r

]
is defined. This action consists in applying a vector field to a function.

In a similar manner the tangent module on a hyperboloid

H
2
ρ = {(b, g, c) ∈ R

3|g2 + 4bc = ρ2, ρ �= 0} (1.2)

can be defined. The main goal of this paper is to explicitly define q-analogs of vector fields
tangent to this hyperboloid. Note that if K = R and ρ is real, we get a one-sheeted hyperboloid.
If ρ is purely imaginary, we get a two-sheeted hyperboloid. However, if K = C we allow ρ

to take any non-trivial value. Let us emphasize that we prefer to deal with a q-analog of a
hyperboloid since a q-analog of a sphere (the so-called Podles sphere) cannot be realized as a
real algebra.

Our hyperboloid is treated to be an orbit H2
ρ ↪→ sl(2)∗ of the coadjoint action of the Lie

algebra sl(2). Vector fields arising from this coadjoint action are tangent to all orbits in sl(2)∗

and they will be called tangent vector fields. (Also, they are the Poisson vector field w.r.t.
the linear Poisson–Lie bracket defined on the space sl(2)∗.) Below, we introduce braided
analogs of these vector fields. They are in a sense tangent to a quantum hyperboloid and form
a projective module over the algebra Kq

[
H2

ρ

]
.

To define the space Vect
(

H2
ρ

)
of all vector fields on a hyperboloid, we apply the above

scheme to the space R
3 ∼= sl(2)∗ endowed with an action of the group SL(2). The

corresponding hyperbolic infinitesimal rotations B,G,C tangent to the hyperboloid (1.2)
span the space Vect

(
H2

ρ

)
and are subject to an analog of the relation (1.1):

2cB + gG + 2bC = 0. (1.3)

A quantum analog of the algebra K
[

H2
ρ

]
is well known (it can easily be obtained from the

property that this algebra is Uq(sl(2))-covariant). Moreover, this algebra can be introduced
to be an appropriate quotient of the so-called q-Minkowski space algebra Kq[R4] (as defined
in [CW1, CW2, OS, MM, M, K]) which is a particular case of reflection equation algebra
(REA). These vector fields are associated with the algebra Kq

[
H2

ρ

]
.

Let L be the space spanned by the generators of Kq[R4] and SL = span(b, g, c) be a
three-dimensional subspace of the space L. We need a braided analog [, ]q : SL⊗2 −→ SL
of the sl(2) Lie bracket. By using this q-bracket we define ‘braided tangent vector fields’

2
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Bq, Gq, Cq following the classical pattern. They are tangent to the quantum hyperboloid
and subject to an analog of the relation (1.3):

(1 + q−2)bCq + gGq + (q2 + 1)cBq = 0. (1.4)

The main difficulty is then of extending these braided vector fields well defined on SL to
Kq[R3] preserving the relation (1.4).

In [A] and [DG] a non-constructive method is suggested using a family of Uq(sl(2))-
covariant projectors Pk (k ∈ N

∗ i.e.: k is a strictly positive integer) defined as polynomials
in elements using a braiding of the Birman–Murakamin–Wenzl type. (A way of constructing
such operators Pk is described in [OP].) As a result, our braided vector fields are well defined
on Kq[R3] but it is very difficult to calculate their action on elements of Kq[R3] of higher
degree than 1.

Thus, in this paper we propose, using the Lyubashenko–Sudbery embedding of sl(2)q in
the QG Uq(sl(2)) (see [W] and [LS]), to define this extension and then to deduce an explicit
representation of our vector fields knowing the representation theory of sl(2)q in [DS].

Note that these braided vector fields are useful tools to define q-analogs of the Laplace
and Maxwell operators on non-commutative algebras (see [DG]), and the main interest of
our construction is that it helps to better understand the action of our braided vector fields on
Kq[R3]. Consequently, we think it could facilitate the study of the q-analogs of the Laplace
and Maxwell operators defined in [DG].

2. Vector fields on a classical hyperboloid

Let us consider the coordinate algebra K[R3] endowed with a basis {b, g, c} and a SL(2)-
covariant Poisson bracket:

{g, b} = 2b, {g, c} = −2c, {b, c} = g.

The corresponding Poisson fields are

B = {b, .} = g∂c − 2b∂g, G = {g, .} = 2b∂b − 2c∂c, C = {c, .} = −g∂b + 2c∂g.

They are tangent to hyperboloids H2
ρ and subject to the relation

2cB + gG + 2bC = 0. (2.1)

The commutation relations for B,G,C are⎧⎨
⎩

GB − BG = 2B

BC − CB = G

CG − GC = 2C.

(2.2)

These operators in the basis {b,−g,−c} are

B =
⎛
⎝0 2 0

0 0 1
0 0 0

⎞
⎠ , G =

⎛
⎝2 0 0

0 0 0
0 0 −2

⎞
⎠ , C =

⎛
⎝0 0 0

1 0 0
0 2 0

⎞
⎠ . (2.3)

Consider the coordinate algebra of a hyperboloid H2
ρ :

K
[

H
2
ρ

] = K[R3]/〈4bc + g2 − ρ2〉, ρ �= 0.

The space Vect
(

H2
ρ

)
of all vector fields on this hyperboloid (with a coefficient from K[H2

ρ]),
treated as a K

[
H2

ρ

]
-module, is the quotient

M = K
[

H
2
ρ

]⊕3/
M

3
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of the free K
[

H2
ρ

]
-module K

[
H2

ρ

]⊕3
over the submodule

M = {
ϕ(2cB + gG + 2bC),∀ϕ ∈ K

[
H

2
ρ

]}
.

It is not difficult to see that the module M is projective. Indeed, the matrix

e = 1

ρ2

⎛
⎝2c

g

2b

⎞
⎠ (

b g c
)

defines an idempotent such that M = K
[

H2
ρ

]⊕3
e. Therefore the K

[
H2

ρ

]
-module M can be

realized as a submodule

M = K
[

H
2
ρ

]⊕3
e ⊂ K

[
H

2
ρ

]⊕3
,

where e = Id − e is the complementary idempotent.
The K

[
H2

ρ

]
-module M is called tangent. In contrast to other K

[
H2

ρ

]
-modules on the tangent

module, an action M ⊗ K
[

H2
ρ

] → K
[

H2
ρ

]
is defined. It consists in applying a vector field to a

function.
Let us fix an integer k ∈ N

∗ and consider the vector space:

Vk = span(bk, C(bk), C2(bk), . . . , C2k(bk)).

(Observe that dim(Vk) = 2k + 1.)
We denote by diag(a1, a2, . . . , an) the n×n diagonal matrices, by diag+(a1, a2, . . . , an−1)

the n × n matrices having possibly non-zero elements a1, . . . , an−1 only on the first
overdiagonal and by diag−(a1, a2, . . . , an−1) the n × n matrices having possibly non-zero
elements a1, . . . , an−1 only on the first subdiagonal.

In the basis
{
bk, 1

1!C(bk), 1
2!C

2(bk), . . . , 1
(2k)!C

2k(bk)
}

of Vk the operators B,G,C are,

respectively, represented by the (2k + 1) × (2k + 1) matrices Bk,Gk, Ck:

Bk = diag+(2k, 2k − 1, 2k − 2, . . . , 1) (2.4)

Gk = diag(2k, 2k − 2, 2k − 4, . . . ,−2k) (2.5)

Ck = diag−(1, 2, 3, . . . , 2k). (2.6)

Thus, the vector fields B,G,C being restricted to the component Vk realize the finite-
dimensional representation ρk : sl(2) −→ End(Vk) of the algebra sl(2) defined by the
matrices (2.4)–(2.6). The restriction of (2.2) on Vk gives us⎧⎨

⎩
GkBk − BkGk = 2Bk

BkCk − CkBk = Gk

CkGk − GkCk = 2Ck.

(2.7)

So the operator B can be defined as a collection {Bk, k ∈ N
∗} and similarly for those G and

C. Besides, it follows from the definition that B(1) = G(1) = C(1) = 0. Also, as we said the
operators B,G,C are subject to the relation (2.1) and they generate a projective module M.
Our main goal consists in constructing q-analogs of these operators.

3. Quantum hyperboloid via REA

There exists different ways of introducing quantum orbits. In this section, we define a quantum
hyperboloid algebra as a quotient of the so-called REA. First, let us introduce this algebra.

4
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Let V be a vector space over the ground field K = C or R and R : V ⊗2 → V ⊗2 be an
invertible operator satisfying the braid equation

(R ⊗ Id)(Id ⊗ R)(R ⊗ Id) = (Id ⊗ R)(R ⊗ Id)(Id ⊗ R).

Such a solution is called braiding. (Note that R is usually denoted by R̂.) If moreover, R
satisfies the relation

(qId − R)(q−1Id + R) = 0, q ∈ K

R is called a Hecke symmetry for q �= 1 and an involutive symmetry for q = 1. In the following
q is assumed to be generic. This means that q can take any value from K apart from those from
a countable subset (which does not contain 1). Observe that for the QG Uq(sl(2)) (we will
recall the definition of Uq(sl(2)) at the beginning of section 4) generic means q /∈ {0, i,−i}
(see [RT]).

Fix a basis {xi} ∈ V, 1 � i � n = dim V and the corresponding basis {xi ⊗ xj } in the
space V ⊗2. Then the operator R can be identified with a matrix.

Example 1. Let n = 2. Fix a basis in which the standard generators of the QG Uq(sl(2))

have the classical form

X =
(

0 1
0 0

)
, K =

(
q 0
0 q−1

)
, Y =

(
0 0
1 0

)
.

Then the Hecke symmetry, which is the image of the universal quantum R-matrix composed
with the usual flip, is the following:

Rq =

⎛
⎜⎜⎝

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

⎞
⎟⎟⎠ . (3.1)

Example 2. A natural generalization of the previous example for n > 2 is

R =
∑
i,j

qδij h
j

i ⊗ hi
j +

∑
i<j

(q − q−1) hi
i ⊗ h

j

j , (3.2)

where
{
h

j

i

}
is the base in the space of left endomorphisms of the basic space V such that

h
j

i (xk) = δ
j

k xi . In the matrix form, it reads

Rkl
ij = qδkl δl

i δ
k
j + (q − q−1)�(j − i)δk

i δ
l
j ,

where �(i) = 1 for i > 0 and �(i) = 0 for i � 0.

Definition 3. The algebra generated by the unity and generators l
j

i , 1 � i, j � n subject to
the system

R(L ⊗ Id)R(L ⊗ Id) − (L ⊗ Id)R(L ⊗ Id))R = 0, (3.3)

where L = ∥∥l
j

i

∥∥ is a matrix with the entries l
j

i is called the reflection equation algebra (REA).
It is denoted by L(q).

Example 4. Go back to example 1. So, R is the form of the matrix (3.1).

5
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Let L =
(

a b

c d

)
=

(
l1
1 l2

1

l1
2 l2

2

)
be the matrix coming in (3.3):

⎛
⎜⎜⎝

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a 0 b 0
0 a 0 b

c 0 d 0
0 c 0 d

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a 0 b 0
0 a 0 b

c 0 d 0
0 c 0 d

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝

a 0 b 0
0 a 0 b

c 0 d 0
0 c 0 d

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a 0 b 0
0 a 0 b

c 0 d 0
0 c 0 d

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

⎞
⎟⎟⎠ = 0.

By explicitly computing this system we obtain

qab − q−1ba = 0, q(bc − cb) = (q − q−1)a(d − a),

qca − q−1ac = 0, q(cd − dc) = (q − q−1)ca,

ad − da = 0, q(db − bd) = (q − q−1)ab.

(3.4)

The algebra L(q) corresponding to this Hecke symmetry Rq is called the q-Minkowski space
algebra. In this case it is also denoted by Kq[R4].

There exists an automorphism C : V → V (in a matrix form C = (C
j

i )) such that the
elements Tr (CLk), k = 0, 1, 2, . . . are central in the algebra L(q) (here Tr is the usual trace).
The quantities Tr (CLk) are also denoted by Trq Lk and called q-trace (or quantum trace) of the
matrices Lk. We consider the q-trace Trq as an operator from Matn(A) to A where A = L(q).
Note that the matrix C is unique up to a factor.

By assuming R to be as in example 1 and with an appropriate normalization of this matrix
we obtain C = (

q−1

0
0
q

)
and therefore Trq L = q−1 a + q d.

Now, we rewrite the system (3.4) in the basis {�, b, g, c} where � = q−1a +qd, g = a−d:

q2gb − bg = −(q − q−1)�b, b� = �b,

(q2 + 1)(bc − cb) + (q2 − 1)g2 = −(q − q−1)�g, g� = �g,

q2cg − gc = −(q − q−1)�c, c� = �c.

(3.5)

Hereafter, nq = qn−q−n

q−q−1 is the q-analog of the number n ∈ N.

Now, we introduce the algebra Kq[R3] = Kq[R4]/〈�〉 which is a braided analog of the
coordinate algebra K[R3]. It is generated by three elements b, g, c subject to

q2gb − bg = 0, (q2 + 1)(bc − cb) + (q2 − 1)g2 = 0, q2cg − gc = 0. (3.6)

The generating spaces span(a, b, c, d) and span(b, g, c) of the algebras Kq[R4] and Kq[R3]
are, respectively, denoted by L and SL.

Consider the central element Tr qL
2 ∈ Kq[R4]. In the basis {b, g, c, �} its explicit form is

TrqL
2 = q−1bc + qcb + 2−1

q (g2 + �2).

Its image in the algebra Kq[R3] is q−1bc + 2−1
q g2 + qcb. In what follows its multiple

q−12qbc + g2 + q2qcb

6
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is denoted by Casq . It is a central element in this algebra. So, it is a braided analog of the
sl(2) Casimir element Cas = 2bc + g2 + 2cb. The quotient of the algebra Kq[R3] over the
ideal generated by the element Casq − ρ2 is called the quantum hyperboloid if ρ �= 0. It is
Kq

[
H2

ρ

]
. Observe that Casq is the unique quadratic element (up to a factor) in Kq[R3] which

is Uq(sl(2))-invariant.

4. The embedding of sl(2)q in the QG Uq(sl(2))

Recall that the QG Uq(sl(2)) is generated by the unit and four generators K,K−1, X, Y subject
to the relations

KεK−ε = 1, KεX = q2εXKε, KεY = q−2εYKε,

XY − YX = K − K−1

q − q−1
, ε = ±1.

(4.1)

There exists a coproduct 
 and an antipode S which (together with the standard counit) endow
this algebra with a Hopf structure:


(Kε) = Kε ⊗ Kε, 
(X) = X ⊗ K−1 + 1 ⊗ X, 
(Y ) = Y ⊗ 1 + K ⊗ Y (4.2)

S(Kε) = K−ε, S(X) = −XK, S(Y ) = −K−1Y. (4.3)

Let us define an action of the QG Uq(sl(2)) on the space SL as follows:

X(b) = 0, X(g) = −2qb, X(c) = qg, (4.4)

Kε(b) = q2εb, Kε(g) = g, Kε(c) = q−2εc, (4.5)

Y (b) = −g, Y (g) = q−12qc, Y (c) = 0. (4.6)

The reader can easily check that the structure of the algebra Kq[R3] is compatible with the
action of the QG Uq(sl(2)) extended to higher power of SL via the coproduct 
. In order to
do this, it suffices to check that the system (3.6) is invariant w.r.t. the QG Uq(sl(2)).

Considering the Hopf algebra (Uq(sl(2)),
, S), let us conceive the ‘quantum adjoint’
action of the QG on itself defined as follows (hereafter, we use the Sweedler notation):

∀ U,V ∈ Uq(sl(2)) : U(V ) = U1V S(U2) with 
(U) = U1 ⊗ U2.

Proposition 5. The vector space sl(2)q generated in the algebra Uq(sl(2)) by X+, X0, X−
with

X+ = X, X0 = q2XY − YX, X− = qK−1Y

is closed under the action of the QG Uq(sl(2)) and is by consequence isomorphic to the matrix
representation.

Proof. See [LS]. However, for the convenience of the reader, we can prove this proposition
with our notations. The formulae that we use for this proof are (4.1)–(4.3).

We place ourselves in Uq(sl(2)) with the coproduct 
 and its associated antipode S. We
can then define an ad-action on Uq(sl(2)) using 
 and S.

Let X+ = X:

X(X+) = X(−XK) + XXK = −X2K + X2K = 0.

Let X0 = −Y (X+):

Y (X+) = KX(−K−1Y ) + YX = −(q2XY − YX).

7
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So X0 = q2XY − YX.
Let now X− = q

2q
Y (X0):

Y (X0) = q2(YX − XY)Y + Y (XY − YX).

So

(q − q−1)Y (X0) = q2(K−1 − K)Y + Y (K − K−1) = K−1(q2 − q−2)Y,

and then X− = qK−1Y .
It is easy to see that

K(X+) = q2X+, K(X0) = X0, K(X−) = q−2X−
Y (X−) = q

(
Y

(−K−1Y
)

+ YK−1Y
) = 0

X(X−) = q
(
K−1Y (−XK) + XK−1YK

) = q(q2XY − YX) = qX0

X(X0) = q2XY(−XK) + q2X2YK − YX(−XK) − XYXK

X(X0) = K−1 q2XK − q2XK−1 − KX + K−1X

q − q−1
K = −2qX+ .

�

Proposition 6. The generators X+, X0, X− satisfy⎧⎨
⎩

q2X0X+ − X+X0 = CmrX+

(q2 + 1)(X+X− − X−X+) + (q2 − 1)X2
0 = CmrX0

q2X−X0 − X0X− = CmrX−

with Cmr being a central element in the QG Uq(sl(2)) :

Cmr = (q4 − q2 + 1)XY − q2YX − 1

q − q−1
K +

q4

q − q−1
K−1.

Proof. See [LS]. �

Corollary 7. Let us consider an irreducible matrix representation π of the QG Uq(sl(2))

then⎧⎨
⎩

q2π(X0)π(X+) − π(X+)π(X0) = Cmrππ(X+)

(q2 + 1) (π (X+) π (X−) − π(X−)π (X+)) + (q2 − 1)π(X0)
2 = Cmrππ(X0)

q2π(X−)π(X0) − π(X0)π(X−) = Cmrππ(X−)

(4.7)

with Cmrπ ∈ K.

5. Braided analog of tangent vector fields

Let us endow the space SL with a braided analog of the Lie bracket sl(2). In order to do so,
we extend the action of the QG Uq(sl(2)) to the space SL⊗SL and decompose it into a direct
sum of irreducible Uq(sl(2)) submodules SL ⊗ SL = V0 ⊕ V1 ⊕ V2, where the subscript
stands for the spin. Then the operator

[ , ] : SL ⊗ SL → SL

is a Uq(sl(2))-morphism iff it is trivial on the components V0 and V2, and it is an isomorphism
between V1 and SL. By this condition, the bracket is defined in the unique (up to a factor)
way.
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Its multiplication table is as follows:

[b, b] = 0, [b, g] = −ωb, [b, c] = ω
q

2q

g, [g, b] = ωq2b,

[g, g] = ω(q2 − 1)g, [g, c] = −ωc, [c, b] = −ω
q

2q

g,

[c, g] = ωq2c, [c, c] = 0.

Here ω is an arbitrary factor.
Introduce q-analogs of the adjoint operators as follows Bq = ad(b), Gq = ad(g), Cq =

ad(c), where the action ad is defined via the above bracket. These operators in the basis
{b,−g,−q−1c} are

Bq = ω

⎛
⎝0 1 0

0 0 2−1
q

0 0 0

⎞
⎠ Gq = ω

⎛
⎝q2 0 0

0 q2 − 1 0
0 0 −1

⎞
⎠ Cq = ω

⎛
⎝ 0 0 0

q2−1
q 0 0

0 q3 0

⎞
⎠ .

(5.1)

Thus, these operators are subject to⎧⎨
⎩

q2GqBq − BqGq = θBq

(q2 + 1)(BqCq − CqBq) + (q2 − 1)G2
q = θGq

q2CqGq − GqCq = θCq

(5.2)

provided ω = θ(q4 − q2 + 1)−1.
We deduce the classical limit (2.3) from (5.1) for q = 1, θ = 2.

Proposition 8. The operators Bq,Gq, Cq (defined on SL) are subject to

q−12qbCq + gGq + q2qcBq = 0. (5.3)

Proof. It is straightforward. �

We now consider the main goal of this paper. We want to extend the operators Bq,Gq, Cq

to the algebra Kq[R3], preserving the relation (5.3). A method is suggested in [A] and [DG].
Our method is different because we use the Lyubashenko–Sudbery construction. We get then
an explicit extension formula of our operators Bq,Gq, Cq via the coproduct 
 of the QG
Uq(sl(2)).

We can see that on SL:

Bq = τX = τX+, Gq = τ(q2XY − YX) = τX0,

Cq = τqK−1Y = τX− with τ = 2−1
q ω.

And X+, X0, X− are well defined on Kq[R3] because X,K, Y are defined on Kq[R3] via the
coproduct 
.

This leads us to the main result of this paper.

Theorem 9. On Kq[R3], the operators X+, X0, X− are subject to

q−12qbX− + gX0 + q2qcX+ = 0. (5.4)

Proof. It is straightforward from (4.2), (4.4) and (4.5) that

∀ k ∈ N
∗ : X(bk) = 0 and K(bk) = q2kbk.

So bk is a highest weight vector.

9
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We note that Casq = q−12qbX− + gX0 + q2qcX+.
Let us show that

∀k ∈ N
∗ : Casq(b

k) = 0.

From (4.1), (4.5) and (3.6):

Casq(b
k) = q−12qbqK−1Y (bk) + g(q2XY − YX)(bk) + q2qcX(bk)

= 2qbK−1Y (bk) + q2gXY(bk)

= 2qbq2YK−1(bk) + q2g

(
YX +

K − K−1

q − q−1

)
(bk)

= q−2k+22qbY (bk) + q2(2k)qgbk

= q−2k+2b(2qY (bk) + (2k)qb
k−1g).

We show then by induction on k ∈ N
∗ that

∀ k ∈ N
∗ : Y (bk) = −2−1

q (2k)qb
k−1g.

The statement holds for k = 1 from (4.6).
If the statement holds for some k ∈ N

∗ then from (4.2), (4.5), (4.6) and (3.6):

Y (bk+1) = Y (b.bk) = Y (b)bk + K(b)Y (bk)

= −gbk + q2b
(−2−1

q (2k)q bk−1g
)

= −q−2kbkg − q22−1
q (2k)qb

kg

= −2−1
q

(
q−2k2q + (2k)q q2

)
bkg

= −2−1
q (2(k + 1))qb

kg.

So, the statement holds for k + 1 and we deduce that

∀ k ∈ N
∗ : Casq(b

k) = 0.

Let k ∈ N
∗ and Vk be the Uq(sl(2)) submodule of SL⊗k with the highest vector bk, i.e.,

Vk = span(bk, Y (bk), Y 2(bk), . . . , Y 2k(bk)).

We consider the following lemma.

Lemma 10.

∀ v ∈ Kq[R3] : Y
(
Casq (v)

) = Casq(Y (v)).

We conclude from this lemma that

∀ k ∈ N
∗ : Casq(Vk) = 0.

Now, observe that for a generic q we have Kq[R3] ∼= (⊕Vk) ⊗ Z, where Z is Uq(sl(2))-
invariant. It concludes the proof:

Casq(Kq[R3]) = 0.

It is then easy to extend Bq,Gq, Cq from SL to Kq[R3] preserving the relation (5.3).
Thus, the space of all braided tangent vector fields is treated as a left Kq[R3]-module which is
the quotient of the free module Kq[R3]⊕3 over the submodule generated by the lhs of (5.3).

Recall Casq = q−12qbc + g2 + q2qcb and observe that

X+(Casq − ρ2) = X0(Casq − ρ2) = X−(Casq − ρ2) = 0 for ρ �= 0.
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Thus, the operators X+, X0, X−, and consequently our braided tangent vector fields
Bq,Gq, Cq , are also defined on Kq

[
H2

ρ

]
.

Proof of lemma 10.

Casq(v) = q−12qbqK−1Y (v) + g(q2XY − YX)(v) + q2qcX(v).

So from (4.1), (4.2), (4.5) and (4.6):

Y (Casq(v)) = 2qY (b)K−1Y (v) + 2qK(b)YK−1Y (v) + Y (g)(q2XY − YX)(v)

+ K(g)(q2YXY − Y 2X)(v) + q2qY (c)X(v) + q2qK(c)YX(v)

= −2qgK−1Y (v) + q22qbq−2K−1Y (Y (v)) + q−12qc(q
2XY − YX)(v)

+ g(q2YXY − Y 2X)(v) + q−12qcYX(v)

= −2qgK−1Y (v) + q−12qbX−(Y (v)) + q2qcX+(Y (v)) − q−12qcYX(v)

+ gX0(Y (v)) + g

(
−q2 K − K−1

q − q−1
Y + Y

K − K−1

q − q−1

)
(v) + q−12qcYX(v)

= Casq(Y (v)) − 2qgK−1Y (v) + (q − q−1)−1g(−q2KY + q2K−1Y

+ q2KY − q−2K−1Y )(v)

= Casq(Y (v)) − 2qgK−1Y (v) + 2qgK−1Y (v) = Casq(Y (v)). �

6. Representation theory of braided tangent vector fields

Fix the parameter θ ∈ K of (2.7). (For q = 1, θ = 2.) We know how to extend Bq,Gq, Cq

to Kq[R3] (and Kq

[
H2

ρ

]
) preserving the relation (5.3). We want to define now which is the

unique extension which preserves also the relation (2.7). For that, we apply what we know
about the representation theory of sl(2)q in [DS] to X+, X0, X− in Vk.

Recall that in the basis {b,−g,−q−1c} on V1 = SL, our vector fields Bq,Gq, Cq are
defined by the matrices B1

q ,G
1
q, C

1
q :

B1
q = τ1

⎛
⎝0 2q 0

0 0 1
0 0 0

⎞
⎠ G1

q = τ1

⎛
⎝q22q 0 0

0 (q2 − 1)2q 0
0 0 −2q

⎞
⎠

C1
q = τ1

⎛
⎝0 0 0

q 0 0
0 q32q 0

⎞
⎠

(6.1)

with τ1 = 2−1
q ω.

In this basis, our action of Uq(sl(2)) on SL is defined by the following matrices:

X =
⎛
⎝0 2q 0

0 0 1
0 0 0

⎞
⎠ , K =

⎛
⎝q2 0 0

0 1 0
0 0 q−2

⎞
⎠ , Y =

⎛
⎝0 0 0

1 0 0
0 2q 0

⎞
⎠ ,

and we know that

B1
q = τ1X = τ1X+, G1

q = τ1(q
2XY − YX) = τ1X0, C1

q = τ1qK−1Y = τ1X−.

This leads us to generalize this construction on Vk for k ∈ N
∗.

Considering the basis

{
bk,

1

1q!
Y (bk),

1

2q!
Y 2(bk), . . . ,

1

(2k)q!
Y 2k(bk)

}

11
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where iq! = iq × (i − 1)q × · · ·× 2q × 1q , we define the operators Bk
q ,G

k
q, C

k
q on Vk endowed

with our basis with the (2k + 1) × (2k + 1) matrices:

Bk
q = τk · diag+((2k)q, (2k − 1)q, (2k − 2)q, . . . , 2q, 1) (6.2)

Gk
q = τk · diag(q2(2k)q, q

22q(2k − 1)q − (2k)q, . . . , q
2(2k)q − 2q(2k − 1)q,−(2k)q) (6.3)

Ck
q = τk · diag−(q−2k+3, q−2k+52q, q

−2k+73q, . . . , q
2k+1(2k)q) (6.4)

We just used the Lyubashenko–Sudbery construction in our new basis:

Bk
q = τkX+ = τkX, Gk

q = τkX0 = τk(q
2XY − YX), Ck

q = τkX− = τkqK−1Y

with the following representation of Uq(sl(2)) on Vk:

X = diag+((2k)q, (2k − 1)q, (2k − 2)q, . . . , 2q, 1)

K = diag(q2k, q2k−2, . . . , q−2k+2, q−2k)

Y = diag−(1, 2q, 3q, . . . , (2k − 1)q, (2k)q).

We deduce from the relations (5.4) and (4.7) that the operators Bk
q ,G

k
q, C

k
q are subject to (5.3)

and (5.2) for appropriate choices of τk ∈ K:

∀ k ∈ N
∗, τk = q−2θ

(2k + 2)q − (2k)q
= q−2θ

q2k+1 + q−2k−1
.

Remark 11. We can see that Bk
1 = Bk,Gk

1 = Gk,Ck
1 = Ck if we pose θ = 2.

Example 12. If k = 2, we consider the following basis of the vector space V2:

V2 = span(b2,−q2bg − gb, qg2 − q3bc − q−1cb, qgc + q−1cg, q−2c2).

In this basis, we obtain the following representation of our braided vector fields:

B2
q = τ2

⎛
⎜⎜⎜⎜⎝

0 4q 0 0 0
0 0 3q 0 0
0 0 0 2q 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

G2
q = τ2

⎛
⎜⎜⎜⎜⎝

q24q 0 0 0 0
0 q22q3q − 4q 0 0 0
0 0 (q2 − 1)2q3q 0 0
0 0 0 q24q − 2q3q 0
0 0 0 0 −4q

⎞
⎟⎟⎟⎟⎠

C2
q = τ2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
q−1 0 0 0 0

0 q2q 0 0 0
0 0 q33q 0 0
0 0 0 q54q 0

⎞
⎟⎟⎟⎟⎠ .

The reader can now calculate what the representations Bk
q , Gk

q, Ck
q on Vk for k > 2 are.
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